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Abstract—Synthetic DNA is an attractive alternative for data
storage media due to its high information density, low energy usage,
and exceptional robustness. Enzymatic DNA synthesis was recently
introduced to allow cost effective synthesis of longer DNA molecules
for data storage. This method is characterized by stutter errors which
are sticky insertions so that every base in the designed sequence may
be synthesized more than once. In this work, we study the problem
of reconstructing the original sequence from a set of noisy reads
originating from the stuttering enzymatic synthesis. We present
different reconstruction algorithms and analyze their expected
success probability and error rate for three different scenarios that
depend on the information which is known about the stutter errors.
We evaluate algorithmic performance analytically as well as by
using simulations. We are especially interested in characterizing the
performance as a function of the read depth. Our findings can be
used to evaluate the trade-offs between synthesis quality indicators
and the sequencing depth required for reconstruction with high
probability. In principle, the probability of reconstruction failure
exponentially decays with the sequencing depth, as demonstrated
in the study. We also analyze the use of error-correcting codes to
improve the error performance.

I. INTRODUCTION

Synthetic DNA is an attractive alternative for data storage
media. With an information density orders of magnitude better
than that of magnetic media and due to its exceptional resilience
DNA can potentially efficiently store data for centuries and in
dynamic conditions [13, 18]. This was demonstrated in studies
covering a variety of encoding schemes, sequencing technologies,
and data access capabilities [1, 4, 6, 8, 12, 13, 29, 30].

One of the main limitations of DNA based storage systems
is the DNA synthesis technology. Current synthesis technology
is based on iterative phosphoramidite chemistry which limits the
length of the synthesized DNA molecules. Different approaches
to overcome this limitation have been proposed over the years.

Two recent studies suggested the use of customized enzymatic
reaction for de-novo synthesis of DNA molecules [19, 23].
Lee et al. [19] suggested an enzymatic DNA synthesis system
that uses a combination of enzymes to create a desired DNA
sequence. Briefly, template independent DNA polymerase is used
to elongate the synthesized molecules with a desired base as
substrate while apyrase is used to degrade the substrate bases
simultaneously. The result is a DNA molecule which consists
of a sequence of homopolymer stretches (runs), however with
variable lengths. The order of the different runs is determined
according to the designed sequence while their length varies and
depends on the chemical dynamics of the two enzymes. The re-
sulting molecules may be referred to as a stuttering representation
of the original sequence where each letter in the design appears
one or more times consecutively. To overcome the ambiguity
of the variable run-lengths, Lee et al. suggested using a ternary
encoding so that no two consecutive letters will be identical (thus
avoiding the synthesis of long “merged runs”). This encoding
simplifies the decoding and reduces the error rates. However, this
also significantly reduces the density of the DNA based storage so

that every letter encodes no more than log2(3) = 1.58 bits. Later,
a graph representation of this synthesis model was studied in [17],
with the purpose of optimizing the synthesis time. Yet another
strongly related work in [22] explores a similar error model that
was motivated by Nanopore sequencers. Detailed descriptions
of [17] and [22] can be found in Section III.

The problem of decoding from multiple noisy copies of
the information falls under the general framework of the re-
construction problem such as the trace reconstruction and the
sequence reconstruction problems. The latter one was introduced
by Levenshtein [20, 21], where a sequence is transmitted over
several noisy channels and the goal is to study the minimum
number of channels that guarantee recovery in the worst case.
This problem has been extensively studied for several error
channels, such as substitutions, insertions, deletions, and more;
see e.g. [11, 14, 15, 24, 25, 26, 28]. In the trace reconstruction
problem [2], a sequence x is transmitted over several deletion
channels, where each symbol is deleted with probability p. This
transmission creates multiple noisy copies of x (also called
traces), and the goal is to determine the minimum number of
i.i.d traces in order to reconstruct x with high probability. A
comprehensive survey of the reconstruction problems and their
application to computational biology can be found in [3].

This work is focused on stutter noise that can only increase the
length of each homopolymer (run). We present decoding algo-
rithms that minimize errors with no constraints on the encoded
data. Our algorithms decode the sequence from a set of noisy
reads generated through the stuttering synthesis process. First,
we represent each read as a sequence of runs corresponding to
the sequence of runs in the designed sequence. Next we estimate
the designed length of each run from the set of observed lengths.
Our algorithms differ in this estimation step. We show that a
maximum-likelihood estimation outperforms other approaches.
We analyze the different algorithms both analytically and by
simulations. Similarly to previous works, we first examine the
case in which the stutter noise of the synthesis process is well
characterized and this information is available to the decoding
algorithms. However, as opposed to previous works, we also
investigate the more realistic case in which the information on
the stuttering noise is not available to the decoding algorithms.
Finally, we evaluate the use of error-correcting codes with our
algorithms to improve the system’s reliability. Due to lack of
space some of the proofs are omitted and appear in the full
version of this paper in [27].

II. PROBLEM DEFINITION AND NOTATIONS
A communication channel is said to generate traces of a

fixed message if it produces several perturbed or noisy copies
of the message. A stutter channel C with M outputs produces
M traces from the designed sequence s; see Fig. 1. In our
context these traces are equivalent to reads sampled from a
population of synthesized molecules, all nominally the same
but with stutter synthesis noise. Stutter enzymatic synthesis
noise is predominantly due to the same base (nucleotide) being



synthesized in multiplicities, i.e., it is assumed to have sticky
insertions [7, 16].

Let Σ be the alphabet of the sequences, which is typically
Σ={A,C,G,T} and let s = sk11 s

k2
2 · · · s

k`
` be the designed se-

quence which consists of ` homopolymers (runs) where the j-
th homopolymer, skjj , corresponds to kj intended repetitions of
sj ∈ Σ and for 1 ≤ j < `, sj 6= sj+1. Let VM = {v1, . . . ,vM}
be the multiset of M traces received at the M outputs from the
stutter channel C. Note that these traces represent M sequencing
reads from the synthesized molecules. The stutter channel C is
characterized by a conditional probability Pr, which is defined
by Pr{v rec.|s trans.} for every pair (v, s) ∈ (Σ∗)2. Under the
assumption of stutter noise, the probability is positive only for
pairs (v, s) ∈ (Σ∗)2 for which v can be received by sticky
insertions in s. Hence, the sequence v has to be of the form
v = sn1

1 sn2
2 · · · s

n`

` , where nj ≥ kj for 1 ≤ j ≤ `. Furthermore,
the conditional probability Pr can be succinctly described by the
probability over the values of nj given the ones of kj , that is,
Pr{Nj = nj |kj}, where Nj is a random variable which indicates
the length of the j-th homopolymer. Note that since the bases are
synthesized sequentially, one at a time, these lengths are i.i.d. and
also the distribution of each length Nj can be further simplified.
That is, Nj =

∑k
i=1 Ti where Ti is a random variable indicating

the number of bases the channel outputs when a single base
is synthesized. Hence, the stutter channel C can be described
by the probability Pr{T = t}, or simply by T . For the rest
of the paper, the stutter channel C will be simply described by
the probability distribution of the random variable T or simply
by the random variable T and is denoted by C(T ). Note that
Pr{Nj = nj |kj = 1} = Pr{T = nj}. Hence, the relation
between Pr{N = n|k} and Pr{T = t} is given by

Pr{N = n|k} =
∏

i1,...,ik:
∑k

j=1 ij=n

Pr{T = ij}.

That is, given the value of kj , the random variable Nj is
equivalent to the summation of kj independent instances of the
random variable T .

Assume the random variable T in the synthesis channel has
a geometric distribution given by the parameter p, i.e., T ∼
Geom(p) and Pr(T = t) = (1 − p)t−1p. Then, the random
variable Nj has a negative binomial distribution since

Pr{N = n|k} =
∏

i1,...,ik:
∑k

j=1 ij=n

Pr{T = ij}

=
∏

i1,...,ik:
∑k

j=1 ij=n

(1− p)ij−1p =

(
n− 1

k − 1

)
pk(1− p)n−k.

This case where the stutter channel has a geometric distribution
will receive close attention in the paper since we believe it best
describes the error behavior of this synthesis method [19].

Note that the probability Pr{T = t} may depend on several
more parameters such as the base of the homopolymer, its loca-
tion in the sequence, and the previous homopolymer. However,
since for stutter noise only sticky insertions occur, every ho-
mopolymer is solved independently and as such these parameters
are taken into account in the random variable T that might
differ in its parameters between different homopolymers. This
observation motivates us to define the reconstruction algorithms
that will be studied in this paper.

For a single homopolymer sk, a reconstruction algorithm A
takes as an input the values n1, . . . , nM observed in VM and
outputs an estimate k̂ of the value of k. Note that there is no
need to get v1, . . . ,vM , since the symbol of the homopolymer

is known and therefore it suffices for the algorithms to get just
the homopolymer’s observed lengths. We consider the following
two performance indicators for the algorithms. They are naturally
extended to the entire sequence in Section V.

1) Pfail(A; k,M, C(T )) is the failure probability of A, i.e.,
Pfail(A; k,M, C(T )) = P{A(n1, . . . , nM ) 6= k}.

2) Eerr(A; k,M, C(T )) is the expected deviation error rate of
A, in short error rate, i.e. the expectation of the normalized
absolute difference between A(n1, . . . , nM ) and k,

Eerr(A; k,M, C(T )) = E

[
|A(n1, . . . , nM )− k|

k

]
.

We distinguish three different scenarios. In the first one, no
knowledge on the stutter channel is assumed with respect to the
distribution of the random variable T . The second one provides
the type of the random variable T , but does not specify its
parameters. For example, we can assume that T ∼ Geom(p)
but the value of p is unknown. Lastly, the third provides both the
type of the random variable as well as its parameters. The goal
of this work is to study several reconstruction algorithms for the
stutter channel, with its three scenarios, and analyze their failure
probability and error rate. Previous works only addressed special
cases of the third scenarios.

Figure 1: The communication channel of the stutter synthesis
method and a description of the stutter reconstruction process.

III. RELATED WORK
The stutter synthesis method was first introduced by Lee et

al. [19] as a new low cost DNA synthesis technology. This syn-
thesis method uses enzymes to synthesize sequences according
to a given design sequence. This process results with several
copies of the sequence, while each can be erroneous and the
dominant errors are reflected in variations in the length of each
homopolymer in the sequence. Lee et al. also described in
their work an encoding scheme with the following two main
ideas. The first one imposes the length of each homopolymer to
be 1, which limits the information rate to be at most log2 3.
The second one uses synchronization nucleotides, which are
designated homopolymers within the design sequence that are
used to eliminate the less likely sequences in the decoding.

Jain et al. [17] studied the capacity of stutter synthesis with
the intention of optimizing the synthesis time. They allowed
homopolymers of length greater than one, and thereby the
achievable information rate could be larger than log2 3. They
modeled the possible errors of the synthesized homopolymers
according to some error distribution (Binomial or Poisson). Then,
they translated the error distribution into a constrained system and
created a directed graph that represents all possible sequences
that can be synthesized using the stutter synthesis method. The
constrained system graph was used in order to determine and
optimize the number of synthesis cycles and thus to calculate the
capacity of this synthesis method. Additionally, they explained
how error-correcting codes can be used in their coding scheme in
order to correct run-length errors of the homopolymers. Our work
is focused on the other side of the coin when no coding is used,
and presents practical algorithms for efficient reconstruction of
DNA strands that were synthesized with this enzymatic method.



Magner et al. [22] studied the reconstruction problem from
Nanapore sequencers. In their model they assumed “sticky”
insertions and deletions, in the sense that the length of any
homopolymer in the sequence can increase or decrease but
cannot be deleted completely. They proved that, under some
assumptions on the error distributions, the necessary number of
reads needed to reconstruct a sequence with high probability
is θ(log `) where ` is the number of the homopolymers in the
sequence. Their reconstruction algorithm assumes knowledge on
the expected length of the read homopolymers, as a function
of their original length. Accordingly, their decoding algorithm
calculates the average length of the read homopolymers and uses
it to estimate its original length. They proved that C log2γ+1

2 `
reads, for some constants C and γ, are sufficient to recover the
sequence with high probability. In this case, γ depends on the
variance of the error distribution of the homopolymers. Even
though this work is strongly related to ours, there are three major
differences. First, our model is motivated by the enzymatic DNA
synthesis (as opposed to the Nanopore sequencers) and hence we
assume error distributions where the length of any homopolymer
can only increase. This can be easily achieved by tuning the ratio
between the two enzymes to ensure elimination of deletion errors.
Second, in our problem the number of reads is given and can not
be controlled. Hence, an adaptation of the algorithm presented
in [22] to our model, referred in this paper as the mean-driven
algorithm, is described in Section IV-B and is also compared to
our other algorithmic approaches. Third, we also consider the
more realistic model in which the exact stutter noise behavior is
not known during decoding.

IV. RECONSTRUCTION ALGORITHMS

In this section we describe our reconstruction algorithmic ap-
proaches. Let T ∼ Dist(Θ) where Dist is the stutter distribution
and Θ describes the parameters defining the distribution Dist. As
mentioned before, there are several distinct scenarios regarding
our assumed knowledge of Dist and/or Θ. Hence, we present
in this section several reconstruction algorithms that can be used
under these different scenarios. Clearly, any information about
T can only improve the reconstruction performance. Reasonable
estimates of Dist and Θ can be obtained when the biological
processes involved become mature and when inspection can be
repeatedly performed on many production cycles. In Section V
we investigate the performance of relevant approaches and com-
pare them. We also discuss the advantage of knowing Dist and/or
Θ. We note that said advantage diminishes as the read depth, and
therefore M increases.

Throughout this paper we use the following two additional ab-
breviated notations. The condidtional probability Pr{Ni = n|k}
defined in Section II is denoted by pk(n). Additionally, CPk(m)
denotes the cumulative probability of m under pk. That is,
CPk(m) =

∑m
h=k pk(h). Note that Pfail and Eerr are functions

of pk and CPk.

A. The Min-Driven Algorithm
Our first and naive approach to estimate the length k, of a

homopolymer sk, assumes no knowledge on T . This approach is
based on the fact that for all i ∈ [M ], ni ≥ k. I.e., homopolymers
can only be prolonged by the stutter synthesis channel. Hence,
the output of our first algorithm, which is referred to as the min-
driven algorithm, is simply Amin(n1, . . . , nM ) = minMi=1{ni}.
Next, we analyze the failure probability and the error rate of the
min-driven algorithm Amin.

Theorem 1 It holds that
1) Pfail(Amin; k,M, C(T )) = (1− pk(k))M .

2) Eerr(Amin; k,M, C(T )) =
1

k

∑∞
h=k(1− CPk(h))M .

Note that the failure probability of this simple algorithm ex-
ponentially decays with M and that for the case T ∼ Geom(p),
it holds that Pfail(Amin; k,M, C(T )) = (1− pk)M .

B. The Mean-Driven Algorithm
Next, the case where the expectation of the random variable

T , denoted by µT , is known. That is, it is assumed that the dis-
tribution is not necessarily known but the expected stutter length
on a single base is known. Inspired by the decoding algorithm
presented in [22], we develop an algorithm for assessing the value
of k, using the average length of the respective homopolymers
within the reads in VM . This algorithm, referred to as the mean-
driven algorithm and denoted Amean, leverages the fact that
T ∼ Dist(Θ). The total observed length of the homopolymer is
then the sum of k independent instances, N =

∑k
i=1 Ti, where Ti

is the random variable counting the number of synthesized bases
for the i-th base in the homopolymer. Recall that E[N ] = kµT .
Hence, if the length of the designed homopolymer is k then the
average length of the observed homopolymers should be roughly
kµT , especially when M is large enough.

Let n̄ =
∑M
i=1 ni/M be the average value of the lengths

ni of the observed reads. Then, the output of the mean-driven
algorithm is Amean(n1, . . . , nM ) = k̂ = [n̄/µT ], where [x] is the
closest integer to x. In words, the algorithm predicts k̂ to be
the integer yielding an expectation of the random variable that is
closest to the observed average of the length of the reads (In case
there are two closest integers we choose the larger one). Another
improvement which we used in our simulations in Section V
takes advantage of the fact that the possible values of k are
necessarily between 1 and minMi=1{ni}. We did not consider this
possible improvement in the next theorem in order to simplify
the analysis. Note that the expressions in Theorem 2 upper bound
the failure probability and error rate of this algorithm. Denote
by Pout{Amean outputs r; k,M, C(T )}, or shortly Pout(r; k), the
probability that the algorithm’s output is r, given M , T , and that
the designed homopolymer is of length k.
Theorem 2 It holds that
1)Pout(r; k)=

CPMk(dM(r + 0.5)µT e−1)−CPMk(dM(r − 0.5)µT e−1).

2) Pfail(Amean; k,M, C(T )) = 1− Pout(k; k).

3) Eerr(Amean; k,M, C(T ))=
1

k

∑∞
k̂=1 |k̂−k|Pout(k̂; k).

Proof: Let N =
∑M
i=1Ni and N̄ = N/M the total

and average length respectively. Note that N is a sum of M
independent random variables Ni, N =

∑M
i=1

∑k
j=1 Ti,j . The

cumulative distribution of N is therefore CPMk. Let k̂ =
Amean(n1, . . . , nM ) = [n̄/µT ]. Clearly, the estimation is correct
when k − 0.5 ≤ n̄/µT < k + 0.5, that is, for any n̄ such
that (k − 0.5)µT ≤ n̄ < (k + 0.5)µT . Therefore, Pout(r; k) =

Pr{r − 0.5 ≤ N̄/µT < r + 0.5} (∗)
= CPMk(dMµT (r + 0.5)e −

1)−CPMk(dMµT (r−0.5)e−1) where (*) holds as for z ∈ R+,
Pr{N̄ < z} = CPMk(dMze − 1).

C. The Maximum Likelihood Algorithm
The maximum likelihood (ML) approach is to find the most

likely k̂ given the observed data. That is, our estimator k̂ is
the one that defines the model that maximizes the (posterior)
probability of observing the data VM . This algorithm can be used
in two scenarios regarding our knowledge of T . First, when we



have all the knowledge of T (both Dist and Θ) and the second
when only Dist is known but the exact parameters Θ are not
known. Furthermore, as for all i ∈ [M ], ni ≥ k we specifically
have nmin = minMi=1{ni} ≥ k. Let K be a random variable
that governs the designed length of the homopolymer. That is,
Pr{K = k} is the prior probability for the designed length.
Let N be a random variable which indicates the multiset of the
observed lengths of the homopolymer in the reads.

Additionally, we define Pr{N = {n1, . . . , nM}|K = k} as
the conditional probability of the observed lengths given the
designed length k and under the stutter noise T . Since the stutter
noise in the different reads is assumed to be independent, it holds
that Pr{N = {n1, . . . , nM}|K = k} =

∏M
i=1 pk(ni).

The output of the ML decoder is
AML(n1, . . . , nM ) (1)
= argmax

k′∈[nmin]

{Pr{K = k′}Pr{N = {n1, . . . , nM}|K = k}}

= argmax
k′∈[nmin]

{Pr{K = k′}
M∏
i=1

pk′(ni)}.

As AML assumes that pk(n) can be calculated, we first explain
briefly how pk(n) can be calculated assuming the distribution of
T is known. Let U, V be independent random variables over
N+ with mass functions f, g respectively. The convolution of
f, g is defined as Conv(f, g)(n) =

∑∞
i=0 f(i)g(n − i). Note

that Conv(f, g)(n) is the mass function of the random variable
Z = U +V . In the case of a single probability mass function f ,
representing a random variable U , we define recursively the `-th
convolution of f as follows. Conv(f ; `) = Conv(f, Conv(f ; `−
1)) and Conv(f, 2) = Conv(f, f). Conv(f ; `) represents the
probability mass function of the sum of ` collectively inde-
pendent copies of U . Denote by fT (x) the probability mass
function of T which defines the stutter channel C. Then, the
probability mass function of N =

∑k
i=1 Ti, which we denote by

pk(n) = Pr{N = n} = Conv(fT ; k). Note that in many cases,
given a specific distribution of T , a simpler calculation of pk(n)
(or Conv(fT ; k)) is possible. For example, if T ∼ Geom(p) we
get that pk(n) =

(
n−1
k−1
)
pk(1− p)n−k.

Four variants of AML are defined by two properties:
1) Θ is known or Θ is unknown: this property affects the

way we calculate the probability Pr{N |K = k}.
Θ is known: in this case the calculation of Pr{N |K = k}
is straightforward as we are conditioned by k. Therefore, we
have all the information required to calculate pk(ni) using
convolutions and it is possible to calculate and find the ML
decoder’s output as expressed in (1).
Θ is unknown: first note that in this case the expression
in (1) cannot be calculated directly since the probability
pk′(ni) depends on the value of Θ. Hence, for a given
value of k′, it is necessary to first find an estimator for
Θ, and for ML decoding we find the one that maximizes
the probability

∏M
i=1 pk′(ni). If the expression

∏M
i=1 pk′(ni)

can be differentiated with respect to Θ, then we set the
maximum-likelihood estimator Θ̂ by finding Θ̂ = Θ̂(k′)
that nullifies the derivative of

∏M
i=1 pk′(ni) and maximizes∏M

i=1 pk′(ni). For example, for the specific case of the
geometric distribution we get that given k′, the maximum
likelihood for p̂ is p̂ = (Mk′)/(

∑M
i=1 ni).

2) With or without prior: the prior refers to Pr{K = k′},
the distribution function of the homopolymer lengths, which
follows from the coding of the binary message into DNA.
Without prior: Pr{K = k′} is ignored.
With prior: this case fits better a real life scenario. In
most of the cases we assume that all the possible designed

sequences (messages) are equiprobable. This follows from
the fact that the original binary message is assumed to be
compressed. That is, all |Σ|m possible sequences of length
m are equiprobable. Therefore for any letter `i at index
1 ≤ i ≤ m and σ ∈ Σ it holds that Pr{`i = σ} = 1/|Σ|. It
follows that the homopolymer length is distributed geomet-
rically, that is, K ∼ Geom(1 − 1/|Σ|), which means that
{Pr{K = k′} = (1/|Σ|)k−1(1− 1/|Σ|).

Any of the 4 variants of AML can be used depending on
whether Θ is known and on whether prior knowledge on the
distribution of the designed sequences is available. Note that in
stutter synthesis the typical case Θ would be unknown (synthesis
not well characterized) and a prior on K is known (the binary
message is compressed).

V. PERFORMANCE EVALUATION
This section evaluates the effectiveness of the different al-

gorithms by simulations in the case where the stutter channel
has geometric distribution. For given values of k and given that
T ∼ Geom(p) we generate a set n1, . . . , nN of observed lengths,
simulated as instances of a sum of k random variables (one per
symbol in the designed homopolymer), that is,

∑k
i=1 Ti.

For the single homopolymer evaluations we compared
Amin,Amean, and AML and calculated Pfail and Eerr as defined
in Section II. Note that when using AML on a single homopoly-
mer, we worked without the prior probability. To simulate a full
sequence, representing an encoded message, a random sequence
s of length |s| = 150 bases is created, where in each position
the symbol is selected uniformly from Σ. Based on the designed
sequence s we simulated a set of M reads v1,v2, . . . ,vM ,
such that each read is a noisy copy of s. Each simulated read
is created by simulating every homopolymer of length kj as
described above. We then applied Amin,Amean and AML on every
homopolymer lengths set from the simulated reads. We extended
Pfail and Eerr for the case of the full sequence so that Pfail is
the failure probability of the entire sequence s = sk11 s

k2
2 · · · s

k`
`

and Eerr is the average error per base.

Pfail(A; s,M, C(T ))=Pr{∃1 ≤ j ≤ `;A(n1,j , . . . , nM,j) 6= kj}

= 1−
∏̀
j=1

(1− Pfail(A; kj ,M, C(T ))),

Eerr(A; s,M, C(T )) = E

[∑`
j=1 |A(n1,j , . . . , nM,j)− kj |∑`

j=1 kj

]
.

Due to lack of space, some of the simulation results were
eliminated from this version of the paper and they appear in the
full version of the paper [27].
A. Known p

We first tested the case where p is known to the algorithms.
Figure 2d depicts the effect of the designed length k on Eerr
when tested on a single homopolymer. We observed that larger
values of k yield larger errors for Amin while Amean and AML
perform better.

B. Unknown p
Next, we tested the case where p is unknown which is the more

realistic case for enzymatic DNA synthesis. Figure 2a and 2b
depict the effect of the designed length k on Eerr when tested on
a single homopolymer. As expected Amin performs the same (as
the knowledge of p is not used), and AML has higher error rates
but still preforms better, especially for lower p and/or large k. In
the next figure we analyze the performance on a full sequence. On
Figure 2c we look into AML with prior performance and observe
how p and M affect Eerr. Clearly, as M and/or p increases the
error rate decreases.



(a) Single homopolymer, p=0.2, M =10, p is unknown. (b) Single homopolymer, p=0.6, M =10, p is unknown.

(c) ML with prior. Average error rate, p is unknown.

(d) Single homopolymer, p = 0.6, N = 10, p is known.

Figure 2: Performance evaluation. Single homopolymer (a, b, and d), and full sequence (c).

(a) M = 20, p = 0.2

(b) Failure rate as a function of the error correcting
capability. p = 0.2, M = 20.

Figure 3: Expected failure/success rates as a function of the reconstruction algorithm and the applied error-correcting code.

C. Error-Correcting Codes for Improved Reliability

In this section we evaluate how the data-reliability of the
stutter synthesis can be improved when using error-correcting
codes. Since in the stutter synthesis the dominant errors are
run-length errors, when a length of homopolymer is changed,
we evaluate two families of error-correcting codes. The first
family, which corresponds to error-correcting codes in the Lee
or the Manhattan metrics [9, 10], can correct a total of T indel
errors, where T corresponds to the sum of the errors in all the
homopolymers in the sequence. The second family, typically
referred by limited-magnitude error-correcting codes [5], can
correct up to a given e1 insertion and e2 deletion errors in at
most some t homopolymers. Note that from the practical point
of view of constructing error-correcting codes it is recommended
that the number of homopolymers in the sequences will be fixed
and hence a few changes might be needed in the sequence design.
Figure 3a present the expected success rates of Amean and AML
for different error-correcting coding schemes when p = 0.2 is

known. The X-axis represents the value of T in the first family
of codes, while the Y-axis represents the observed success rate
when using this scheme for M = 20. It can be seen that the ML
algorithm improves the reliability of the data, especially when the
goal is to successfully retrieve the whole data. For example, for
p = 0.2 using the Amean algorithm requires the code to correct
11 errors to achieve a success rate of 1, while using the AML
algorithm the required correctable number of errors by the code
is 7. Hence, less redundancy is needed when using AML as the
reconstruction algorithm and thus the information rate increases.
Lastly, Figure 3b presents, for the second family of codes, the
expected failure rate of AML as a function of the error-correction
capability when p = 0.2 and N = 20. The X-axis represents the
maximal number of errors in a single homopolymer, where we
use e1 = e2, while the Y-axis represents the correctable number
of homopolymers. As expected, the failure rate decreases when
the error-correction capability increases.
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